Looking for Consistency of Semi-Structured Data*

Ekaterina Gorshkova, Igor Nekrestyanov, Boris Novikov, Ekaterina Pavlova
University of St.-Petersburg, Russia
e-mail:{cathy,igor,katya }@meta.math.spbu.ru, borisnov@acm.org

Abstract

Semistructured data models are becoming an important tool
for access to heterogeneous information resources distributed
over network. However, consistency issues for semistruc-
tured data are not covered yet.

In this paper different approaches to address consistency
for semistructured data model are identified. We examine
existing consistency models to find out which of them may
be appropriate, including incomplete and temporal consis-
tency. Further, we define a model in the frame of multi-level
transactions, which relies on abstract high-level operation
semantics rather than read-write semantics for definition of
concurrency. We then analyze commutativity relationships
between basic operations on semistructured data in both
data-dependent and data-independent ways.

1 Introduction

Traditional database systems force all data to adhere to an
explicitly specified, rigid schema. For many new database
applications there can be two significant drawbacks to this
approach:

1. The data may be irregular and thus not conform to a
rigid schema. In relational systems, null values typ-
ically are used when data is irregular, a well-known
headache. While complex types and inheritance in
object-oriented databases clearly enable more flexibil-
ity, it can still be difficult to design an appropriate
object-oriented schema to accommodate irregular data.

2. It may be difficult to decide in advance on a single,
correct schema. The structure of the data may evolve
rapidly, data elements may change types, or data not
conforming to the previous structure may be added.
These characteristics result in frequent schema modi-
fications, another well-known headache in traditional
database systems.

*This work was partially supported by INTAS under grant OPEN-
97-11109, Russian Foundation for Basic Research (grant 98-01-00436),
and Urbansoft Ltd.

First Russian National Conference on

DIGITAL LIBRARIES:

ADVANCED METHODS AND TECHNOLOGIES,
DIGITAL COLLECTIONS

October 19 - 21, 1999, Saint-Petersburg, Russia

57

It may be desirable to have an extremely flexible format
for data exchange between disparate databases. And even
dealing with structured data it may be useful to view it as
semistructured for the purposes of browsing.

The semi-structured data model [2] is very suitable when
data may be extracted from several independent heteroge-
neous sources, for example, integrated representations of
data exhibited by several WWW sites.

In the context of digital libraries, semistructured data
representation may add significant value to more common
free-text search technologies. For example, bibliographic
data have clearly identified semi-structured nature.

Because of these limitations, many applications involving
semistructured data [2] are forgoing the use of a database
management system, despite the fact that many strengths
of a DBMS (ad-hoc queries, efficient access, concurrency
control, crash recovery, security, etc.) would be very useful
to those applications.

Currently, the research on semistructured data is con-
centrated on the following:

1. Data models suitable for representation of semistruc-
tured data.

2. Interfaces, especially Web-based, to access semistruc-
tured data.

3. Query languages and query evaluation.

As with structured data, it is often desirable to maintain
a history of changes to data, and to query over both the
data and the changes. Representing and querying changes in
semistructured data is more difficult than in structured data
due to the irregularity and lack of schema. In [6] a model
for representing changes in semistructured data, DOEM and
a language for querying over these changes, Chorel is pre-
sented. Implementation strategies for the model and query
language is discussed. Also the design and implementa-
tion of a “query subscription service” that permits standing
queries over changes in semistructured information sources
is described.

Several different models for semistructured date were de-
scribed in the literature [1, 4, 11]. Some of these models
allow detailed (although flexible) description of data struc-
ture (heavy-weight models), while others provide only ba-
sic definition features and assume dynamic data description
techniques (light-weight models).

Lore (for Lightweight Object Repository) is a DBMS de-
signed specifically for managing semistructured information.
Implementing Lore has required rethinking all aspects of a

DBMS, including storage management, indexing, query pro-
cessing and optimization, and user interfaces. In [10] an
overview of these aspects of the Lore system is provided, as
well as other novel features such as dynamic structural sum-
maries and seamless access to data from external sources.
Lorel, for Lore Language, is an extension of OQL [5, 3] that
introduces extensive type coercion and powerful path ex-
pressions for effectively querying semistructured data.

Current research on semistructured data does not exam-
ine the dynamic aspects extensively. The following issues
may be identified as gaps:

e Extremely flexible but also extremely terse data model
should be enriched with more powerful modeling fea-
tures.

e Counsistency issues are not studied at all. To fill this
gap, the appropriate framework should be defined, and
consistency management techniques should be devel-
oped.

e In particular, temporal issues may be considered as
essential extension of semistructured data model.

e When the performance is an issue, more efficient stor-
age and indexing structures may be developed and
evaluated.

The reason is that in heterogeneous environment con-
sisting of highly autonomous systems one hardly can expect
that traditional concepts of database consistency may be
applicable.

In this paper we are looking for approaches that may lead
to development of the consistency framework for semistruc-
tured data. Using of methods automatic information renew-
ing involves necessary support of their consistency. Main
goal is to identify the notions related to consistency appli-
cable in heterogeneous distributed decentralized information
systems with semistructured data.

Our major focus is on lightweight semistructured data
models because they provide more flexible environment which
features additional consistency issues.

Traditional consistency frameworks are nor adequate in
context where semistructured data may appear. For ex-
ample, used in relational DBMS consistency constraints are
associated with tables, that constitute the data structure.
But semistructured data has no clear structure. Changing
of notion consistency requires to develop techniques that can
ensure consistency of semistructured data in distributed sys-
tems. This is especially important in light-weight semistruc-
tured data models.

We use light-weight Object Exchange Model (OEM) —
the nested self-describing data model designed at Stanford
University. The data in this model is represented as a di-
rected labeled graph. Each vertex of such graph is an ele-
ment of data and each edge has a label. Leaves of this graph
are atomic objects which has the type and value. Non-leaf
objects, named complex objects, serve as a container for
other objects. This model was designed especially for Lore
— a DBMS for semistructured data. The queries are ex-
pressed in Lorel — the query language used in Lore that is
an extension of OQL.

We then identify different approaches to address consis-
tency For semistructured data model. First, we examine
different consistency models to find out which existing mod-
els may be appropriate.

We define our consistency model in the frame of multi-
level transaction model [16]. The consistency is ensured via

58

a notion of serializability, which is based on commutativity
relationships between operations of different transactions.

We then identify basic operations on semi-structured data
which may be used as a basis for data manipulation algebra,
and investigate commutativity conditions for these basic op-
erations.

The paper is organized as follows. In the next section we
discuss relevant approaches which may be more suitable for
loosely connected autonomous data sources, typically found
on the Internet. We then briefly describe relevant features
of multilevel transactions. Further, we provide definition
of predicates to decide if certain basic operations can com-
mute in Lorel semistructured data manipulation language.
These predicates are represented in Lorel itself and there-
fore depend on the contents of the data store, Next section
defines commutativity predicates for graph-based semistruc-
tured data model which do not depend on the actual data.
Finally, we compare these approaches.

2 Relevant approaches

Consistency issues for semistructured data did not attract
much attention till now. Techniques from traditional data-
bases does not suit really well for semistructured case due
to its specifics.

Traditional databases systems mostly uses serializability
as a correctness criteria. However it seems that semistruc-
tured databases may need some other correctness criteria
to be used. In particular due to the irregular and incom-
plete nature of semistructured data it seems to be reason-
able idea to talk about incomplete consistency. This in-
cludes usage of approximate correctness criteria such as e-
serializability [13, 14, 15].

Yet another potentially interesting approach is based on
recent work [7] which presents the notion of incomplete query
answers. By defining different matching semantics it is pos-
sible to simplify usage of semistructured data. In particular
traditional consistency restrictions (that are probably too
strong for semistructured data) may be relaxed and this
will result in increased level of concurrency. Such relaxation
may be done as by usage of incomplete queries (or updates)
or by direct relaxation of consistency criteria.

Most of semistructured databases import data from ex-
ternal sources through mediators. Imported data are peri-
odically updated by re-importing their current state. This
process is similar to updates of temporal data in real-time
database systems and raises similar consistency problems.
Despite of different scale arise problems are basically the
same. Each value of data element is valid only during some
interval and every set of data elements is also associated
with some relative validity interval. Experience from area
of real-time databases seems to be applicable to the case
of semistructured data. However import of semistructured
data has several unique aspects. One of them is that data
imported from different sources may overlap and even con-
tradict each over.

However, the focus of this paper is on more traditional,
complete and precise consistency. However, consistency mod-
els based on traditional read/write paradigm are too restric-
tive in heterogeneous distributed environment, especially
when primary data sources are not accessible directly due
to presence of wrappers and mediators.

One of promising approaches to consistency is based on
multi-level transaction model [8, 16]. In contrast with tra-
ditional transactions, which are built as sequences of read

or write operations, multilevel transactions are constructed
as a complex control structure.

Each level of a transaction is considered as a sequence of
abstract operations, each of which is considered as atomic
for this level (that is, either completes or fails and in the
latter case has no effect on the data). In addition, it is
assumed that there are no interference between these atomic
operations even if they are executed concurrently.

In other words, the abstract operations of any level have
certain properties of transactions when considered as com-
plex operations at next lower level.

The major advantage of this model is that once consis-
tency is achieved on one of upper levels, there is no need to
care about consistency or any subsuming techniques, such
as serializability, at lower levels.

To achieve serializability of transactions at any level, se-
mantical properties of abstract operations should be con-
sidered. Usually these properties are expressed via com-
mutativity relationship between operations of concurrently
executed transactions.

Given a concurrent schedule, an equivalent schedule may
be built using transpositions of subsequent operations (be-
longing to different transactions provided that these opera-
tions commute.

For this reason, commutativity relationships between op-
erations are very important for any consistency considera-
tions.

In the following sections, we investigate commutativity
for operations on semistructured data.

3 Content-Dependent Commutativity

In this section we present commutativity predicates which
depend on the state of the database, providing for finer gran-
ularity of concurrency control. For each pair of generic Lorel
operations which potentially do not commute, we specify a
Lorel query which tests the commutativity of the operations
in question.

We cousider the following four generic atomic operations:

1. Selecting the set of objects, that satisfy given criteria.

2. Changing atomic value of the object that satisfies given
criteria.

3. Adding the edge from one set of object to another,
each of them must satisfy given criteria.

4. Removing the edge from one set of object to another,
each of them must satisfy given criteria.

These operations may be considered as a basis for all
Lorel data manipulation features.

Any select operations always commute, because they do
not change anything in the database.

Now we can consider other possible pairs of operations.

3.1 Update of Atomic Value vs. Update of Atomic
Value

To verify if an atomic update operator

update LX =D
from A;... A, L
where P (L.X)

commutes with another atomic value update operator

59

update MY = C
from B;...B,, M
where P,(M.Y)

the following query may be evaluated:

select L.X
from AlAn L, Bl...Bm R
where P,(L.X) and Py(R.Y)
and (RY = L.X) and (D != Q)

If this query returns empty result, then operations com-
mute, otherwise X is a set of objects that can cause a conflict.
This is illustrated on figure 1.

Al

A2 B2

O

An Bm

Fig. 1: Two atomic updates

3.2 Select vs. Update of Atomic Value

To verify if a selection operator

select L.X
from A;... A, L
where P, (L.X)

commutes with an atomic value update operator:

update M.Y =D
from B;...B,, M
where P,(M.Y)

the following query may be evaluated:

select L.X
from AlAn L, Bl...Bm R
where P,(L.X) and Py(R.Y)
and (RYY = L.X) and !P,(D)

In these queries D is a constant or arithmetic expression
(for example Y x 3). If this query returns empty result then
operations are commutative, otherwise X is a set of objects
that can cause a conflict.

The select and atomic update operators commute if and
only if the verifying query returns empty set of objects.

Indeed, suppose the verifying query returns non-empty
set of objects — (). This means, that every member of Q

will be retrieved by the first and second query. If we execute
select first, we retrieve all the @ objects. If we execute
atomic update first, the objects from @ do not satisfy Py
and so will not be retrieved by select.

Suppose, operations are not commutative. In this case
the intersection of the set of objects (Q’), retrieved by se-
lect and atomic update queries is not empty. If D satisfies
Px, then all the objects updated by atomic update query,
will be selected by select query and so operations are not
commutative. So, @' is not empty and P, (D) returns false.
This means that verifying returns not null value.

3.3 Update of Atomic Value vs. Removing an Edge

The conditions for commutation of the third and the fourth
operations will be similar. In this section we suppose that
paths which appear in the second query do not contain wild-
cards. For example, we consider removing of the edge and
atomic update. In this situation there can be a conflict if
an edge that we try to remove in first query appear in the
path of the second query. This can happen in two cases as
illustrated on figures 2 and 3, respectively.

C1 E1l
Al

O..
[
o

NG

C / tq

label
Ak+1
[]
o

Q)

An

Fig. 2: Edge removal: first case

In first case we have to check commutation between edge
removal operator, as shown on 2. The generic edge removal
operator may be represented as follows:

update Z.label -= W
from 01...Cp Z, El...EqW
where P,,,(Z,W)

The atomic value update operator is:

update LX =D
from Ay ... Aglabel. A +1... A, X
where P, (X)

To verify if there can be any conflicts we have to evaluate
the query

select X
from C1...Cp Z1, E; ... E; W1,
A Ar{Z2}.label{W2} Agy1 ... An X
where P,w(Z1,W1)
and (Z1 = Z2)
and (W1 = W2) and P,(X)
and not exists V in
(select Ay ... A{Z3}.label{W3}. Apy1...Ax V
where P;(V)) : (Z3 '= Z1) and (W3 I= W1)

The atomic update and edge removing operators are
commutative if and only if the verifying query returns empty
set.

Suppose, the verifying query returns non-empty set of
objects — Q. If we execute atomic update query and then
execute edge removing query all members of @ will be up-
dated. If we execute edge removal query first then objects
in @ will be unreachable for the update query, because the
edge “label” will be removed and there is no other path to
() - members which satisfy update query. In this case ob-
jects in @ will not be updated and so operations are not
commutative.

Suppose, operations are not commutative. In this case
the intersection of the set of objects X', retreived by query
1 and query 2 is not empty. If there is any path to object,
retreived by atomic update query, that doesn’t share any
objects with paths in edge removal query, then operations
are commutative, because atomic update will happen inde-
pendently of removing edge. So, we have that such path
cannot exist and veryfying query returns empty set.

In the second case is illustrated in the figure 3.

C1
Al

@i e
S

@

Fig. 3: Edge removal: second case

We consider the same edge removal operator as in the
first case and seconde edge removal operator shown below:

update Z.label -= W
from 01 - Cp{Z}.Cp_H . Cq w
where P,,,(Z,W)

The query to check commutation may look like follows:

select X
from Cl - Cp{Zl}.Cp+1{W1} - Cq w1
A1 e Ak{ZZ}.label{WZ}.Ak+1 e An X
where P,w(Z1,W1)
and (Z1 = Z2)
and (W1 = W2) and P,(X)
and not exists V in
(select Ay ... Ar{Z3}.label{W3}. Apy1... Ax V
where P,(V)) : (Z3 '= Z1) and (W3 = W1)

If this query returns empty result then operations com-
mute, otherwise X is a set of objects that can cause a conflict.
This can be motivated in a way similar to outlined above.

3.4 Adding an Edge vs. Adding an Edge

The operations of adding (removing) an edge do not com-
mute when the edge that we are adding (removing) in one
query appear in the path expression in the other query. as
shown in figure 4.

label

Bk+1

label2

Bn

Fig. 4: Two edge insertions

Again, we consider generic Lorel operators. To verify if
an edge insertion operator

update Z.label +=W
from Cl...Cp Z, El...Eq w
where P,,,(Z,W)

commutes with

update X.label2 +=Y
from A1 e AmX, Bl . Bk.label.Bk_H e Bn Y
where Py (X,Y)

select V
from Ci...Cp Z1, Ei ... Eq W1,
B, ...B,{Z2}.label{W2}.By1...B, Y
A A, X
where P,,,(Z1,W1)
and (Z1 = Z2)
and (W1 = W2) and P,y (X)Y)

61

This can also be proved in a similar way, because to
execute query 2, we have to retrieve object from

B ...By.label.Bgy1...B,

like in select or atomic update.

4 Content-Independent Commutativity

In order to consider two given operations as “commutative”
we need to be sure that these operations do not affect each
over. Above approach relies on usage of information about
current state of database and only applicable at runtime
stage.

In this section we try to overcome this restriction and
develop some simple content-independent predicates which
guaranties “commutativity” of conformed operations.

4.1 Data Model

We use a simple data model which is based on model pro-
posed in [7]. The model is basically a simplified version
of OEM [12], Both data and queries are represented by la-
beled directed graphs. The nodes in a database graph are
either complex or atomic. Complex nodes have outgoing
edges, while atomic does not. Atomic nodes has values. An
atomic value has a type. In every database, there is one
distinguished complex node, the root. It is the entry point
for accessing the database. Therefore, every node in the
database must be reachable from it.

Most of existing languages for semistructured data sup-
port navigational queries with regular path expressions. In
particular, this applies to a wide range of graph structures
in a database and are therefore not restricted to one with
prespecified schema. Considered model does not explicitly
considers regular path expressions. However some recent
works [9] provides the basis for eliminating regular path ex-
pressions at compile-time.

In order to specify commutativity predicates we also as-
sume that terminal nodes are not shared, i.e. for each ter-
minal node there is only one edge leading to it.

Formally a semistructured database in this model con-
sists of a rooted finitely branched labeled directed graph
G =(0,rp, -P) over set of objects O and a function a that
maps each terminal node to an atom. rp denotes root node
and -P associates to each label [a binary relation I C Nx N
between the nodes (N is a number of objects in O).

4.1.1 Queries

In an abstract view, our queries consists of a set of vari-
ables and constraints on the variables. Constraints are di-
vided into search constraints and filter constraints. As it
was suggested in [7] the queries have three components,
which resemble whose from SQL-query'. The first com-
ponent, the set of search constraints, is analogous o the
FROM-clause. The search constraints forms a labeled di-
rected graph whose nodes are variables: they are a pattern
that has to be matched by a part of the database. The sec-
ond component is a set of filtering constraints, which is anal-
ogous to the WHERE-clause. Those matchings which pass
the filtering constraints are called solutions. The third com-
ponent is a tuple of output variables, which, like SELECT-
clause, specifies answers as restrictions of the solutions to
some variables.

1Note that query in Lorel has same components as SQL query.

More formally query is a triple @ = (Gq, Fg,Tq), where
Gq = (V,rp,,-P?) is a labeled directed graph, called query
graph those nodes are variables; Fj is a set of filter con-
straints; and T4 is a tuple of variables occurring in V called
output variables.

4.1.2 Updates

We are extending the model proposed in [7] with formal-
ization of update operations, resembling components from
Lorel update operation. In an abstract view update opera-
tion consists of constraints on variables and update expres-
sion. Constraints on variables are the same as for query case,
namely search and filter constraints. Unlike SQL-update
Lorel update may result not only in changes of values of vari-
ables but also may cause addition /removal of some edges®.
Therefore update ezpression may be specified by set of up-
dating variables, set of edges to add and set of edges to
remove.

More formally update operation is a set of five elements
U=(Gy,F,, Ty, ,P"), where G, and F, have the same
meaning as for query; T, is a set of variables called updating
variables; P " and -P” are operators which describe set of
edges to add and to remove.

4.2 Commutativity predicates

Before presenting our commutativity predicates let intro-
duce used notations. Lab(-”) denotes the set of labels which
P maps to non-empty binary relations, i.e. Lab(-?) = {I:
P(1) # 0}. We also will use projection -P|y of -2 to sub-
set V' of variables V, formally -?|,, maps each label I to
{(i,v2) : (vi,v2) € -P(D), v €V, v €V'}.

In the framework of the above data model we consider
only two operation — query and update. Therefore there
are only three potential combinations to consider:

e When do two queries commute?

This is the trivial case. No conflicts possible between
two queries because they are read-only operations. So,
queries are always “commutative”.

e When do query and update commute?

In the above notation following condition guaranty
commutativity of query and update in framework of
our model:

Lab(-") (\{Lab(-"* [z, U Lab(-"") U Lab(-"")}) = 0

e When do two updates commute?

Two update operations Uy = (G, Fuy, Tuy, 01, P1)
and Uz = (Guy, Fuy, Tun, -02,-P2) are guaranteed to
commutate if following conditions are hold:

Lab(-"*) ({Lab(-"" |z, ULab(-"#)ULab(-"%)}) = 0
and

Lab(-"*>) ({Lab(-"* |z,, ULab(-")ULab(-")}) = 0

2 Addition/removal of edges may cause change of overall data struc-
ture that is natural in the context of semistructured data but does
not suit well with relational model.

62

Note that operations in question may actually commute
even if corresponding predicate is not hold.

These predicates are pretty rough and probably may be
significantly improved. However they do not require usage
of any runtime information and, therefore, may be applied
during the compilation stage. This makes them potentially
very useful for preliminary planning and optimization.

5 Conclusion

In this paper we are investigating consistency issues related
to semistructured environments. Major focus of this paper is
specification of commutativity relationships in the frame of
multi-level transactions. The commutativity is essential for
establishing consistency when high-level abstract operations
are considered instead of read/write basic operations.

The commutativity predicates are defined in two ways:
as queries in Lorel language and as predicates over graph
model of semistructured data.

The advantage of the former method is that predicates
expresses as queries depend on the contents of the database
and therefore provide more precise commutativity criteria,
potentially enabling better degree of concurrency. The ad-
vantage of the latter method is that predicates depend only
on operators and therefore can be evaluated in advance, po-
tentially providing better performance.

Although major focus of the paper may result in a precise
consistency considerations, we expect that approximate ap-
proaches, such as relative consistency, may be more promis-
ing. We are planning to investigate these approaches in our
future work.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The lorel query language for semistructured
data. Journal of Digital Libraries, 1(1), November 1996.

[2] S. Abiteboul. Querying semistructured data. In Pro-

ceedings of the International Conference on Database

Theory, Delphi, Greece, January 1997.

F. Bancilhon, C. Delobel, and P. Kanellakis. Building
an Object-Oriented Database System: The Story of O2.
Morgan Kaufmann, San Francisco, California, 1992.

3]

[4] P. Buneman, S. Davidson, G. Hillebrand, and D. Su-
ciu. A query language and optimization techniques
for unstructured data. In Proceedings of the ACM
SIGMOD International Conference on Management of

Data, Montr’eal, Qu’ebec, June 1996.

R. Cattell. The Object Database Standard: ODMG-93.
Morgan Kaufmann, San Francisco, California, 1994.

(5]

[6] Sudarshan S. Chawathe, Serge Abiteboul, and Jen-
nifer Widom. Representing and querying changes in
semistructured data. In Proceedings of the Fourteenth
International Conference on Data Engineering, pages
4-13, Orlando, Florida, USA, February 1998.

[7] Yaron Kanza, Werner Nutt, and Yehoshua Sagiv.
Incomplete answers for queries over semistructured
data. In Proceedings of the 6th International Work-
shop on Knowledge Representation meets Databases

(KRDB’99), January 1999.

(8]

[9]

[10]

[11]

(12]

(23]

(4]

[15]

[16]

D. Lomet. MLR: A recovery method for multi-level sys-
tems. Technical Report CRL 91/7, Digital Equipment
Corporation, Cambridge Research Lab, July 1991.

Jason McHugh and Jennifer Widom. Compile-time
path expansion in Lore. In Proceedings of the Work-
shop on Query Processing for Semistructured Data and
Non-Standard Data Formats, Jerusalem, Israel, Jan-
uary 1999.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system
for semistructured data. Technical report, Database
Group, Stanford University, February 1997.

G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sin-
doni. From databases to web-bases: The araneus expe-
rience. Technical Report 34-1998, Universita’ di Roma
Tre, Dipartimento di Informatica e Automazione,, May
1998.

Y. Papakonstantinou, H. Garcia-Molina,
and J. Widom. Object exchange across heterogeneous
information sources. In Proceedings of the Eleventh In-
ternational Conference on Data Engineering, pages 251
— 260, Taipei, Taiwan, March 1995.

Calton Pu and Avraham Leff. Autonomous transaction
execution with epsilon-serializability. In Proceedings of
1992 RIDE Workshop on Transaction and Query Pro-
cessing, IEEE/Computer Society, Phoenix, February
1991.

Calton Pu. Generalized transaction processing with
epsilon-serializability. In Proceedings of Fourth Inter-
national Workshop on High Performance Transaction
Systems, Asilomar, California, September 1991.

Krithi Ramamritham and Calton Pu. A formal charac-
terization of epsilon serializability. IEEE Transactions
on Knowledge and Data Engineering, December 1995.

Gerhard Weikum. Principles and realization strategies
of multilevel transaction management. ACM Transac-
tionson Database Systems, 16(1):132-180, March 1991.

63

